中國混凝土網(wǎng)
當(dāng)前位置: 首頁 » 技術(shù) » 百家爭鳴 » 正文

我國地下工程施工新技術(shù)綜述

放大字體  縮小字體 發(fā)布日期:2008-09-18  來源:中國混凝土網(wǎng)  作者:中國混凝土網(wǎng)
核心提示:我國地下工程施工新技術(shù)綜述

  青藏鐵路的開工建設(shè)和順利實施,為解決高原凍土區(qū)地下工程的施工提供了良好的試驗基礎(chǔ);同時,城市地鐵工程的建設(shè)也對解決復(fù)雜城市地質(zhì)環(huán)境條件下地下工程施工提出了新的挑戰(zhàn);而大型橋梁、跨江隧道和海上設(shè)施的建設(shè)使水下的地下工程施工面臨更高的技術(shù)要求。一系列大型基礎(chǔ)設(shè)施的建設(shè)并完工極大地促進(jìn)了地下工程施工技術(shù)水平,及時總結(jié)和完善這些地下工程施工新工藝和其他技術(shù)成果將為今后的地下工程施工提供良好的技術(shù)支持和保證,對推動我國地下工程的施工帶來巨大的促進(jìn)作用。本文結(jié)合近年來我國一些大型基礎(chǔ)設(shè)施建設(shè)工程,如青藏鐵路、深圳地鐵、上??缃淼赖仁┕み^程中取得的地下工程施工技術(shù)成果,對新工藝進(jìn)行介紹,以便為今后類似工程的施工提供借鑒。

  1 凍土區(qū)地下工程施工新工藝

  青藏鐵路格爾木至拉薩段全長1100km多,穿越世界海拔最高、有世界屋脊之稱、施工條件惡劣的青藏高原。在高海拔多年凍土區(qū)修建鐵路在世界上也是第1次,無成熟的施工經(jīng)驗,技術(shù)含量高。

  1.1 多年凍土區(qū)鉆孔灌注樁施工工藝

  其關(guān)鍵工藝是減少施工過程產(chǎn)生的各種熱量,如鉆孔的摩擦熱、回填料的熱量、灌注樁混凝土的水化熱等,避免樁周地基土溫度場急劇變化,引起樁周地基土一定范圍升溫和融化。同時由于凍土區(qū)有季節(jié)的變化,表層的季節(jié)融化層隨季節(jié)的變化將產(chǎn)生凍脹力,消除這些凍脹力也是鉆孔灌注樁的一個重點。

  為減少施工熱量對凍土區(qū)的影響,盡快形成新的熱平衡狀態(tài),多年凍土區(qū)鉆孔灌注樁樁身混凝土澆筑后,須經(jīng)過一個階段的熱交換過程后方可進(jìn)行承臺以上部分施工,一般熱交換的時間為60d,60d后方可認(rèn)為樁基已基本穩(wěn)定。

  樁基在使用過程中由于凍土季節(jié)的變化將產(chǎn)生凍脹力。根據(jù)凍脹力作用于基礎(chǔ)表面的部位和方向,可劃分為3種:切向凍脹力、水平凍脹力和法向凍脹力(見圖 1)。水平凍脹力相互抵消,對工程造成破壞的主要是凍脹產(chǎn)生的切向力和法向力。在工程建設(shè)中,采取以下措施可以防止樁基礎(chǔ)凍脹:①為避免樁基礎(chǔ)受到法向凍脹力,將樁基礎(chǔ)嵌入多年凍土天然上限以下一定深度;②將鋼制擴筒埋入多年凍土上限以下至少0.5m,護筒內(nèi)徑比樁徑大10cm,并于護筒外圍涂渣油,成樁后不拆除護筒,減少外表面的親水程度;③盡量采用高樁承臺,凍脹嚴(yán)重地區(qū)采用鉆孔擴底樁;④在護筒外側(cè)、低樁承臺底部采用渣油拌制粗顆粒土回填。以上措施能有效地減小切向凍脹力,降低凍土對護筒的上拔凍脹力(見圖2);⑤鉆孔采用旋挖鉆機干法成孔保證孔位置正確和鉆孔的垂直度;⑥采用低溫早強耐久混凝土,避免了混凝土低溫澆筑帶來的強度增長慢的問題。

  1.2 多年凍土隧道施工工藝

  高原多年凍土隧道工程施工可借鑒的經(jīng)驗較少,其核心在于盡量減少氣溫升高對凍土的影響,避免凍土融化壓縮下沉和凍脹力造成施工災(zāi)害和運營隱患。

  凍土的抗壓強度很高,其極限抗壓強度甚至與混凝土相當(dāng)。凍土融化后的抗壓強度急劇降低,所形成的熱融沉陷和下一個寒季的凍脹作用常常造成工程建筑物失穩(wěn)而難以修復(fù)。

  含水的松散巖石和土體,溫度降低到0℃時,伴隨有冰體的產(chǎn)生,這是凍結(jié)狀態(tài)的主要標(biāo)志。水結(jié)成冰時,體積增加約9%,使土體發(fā)生凍脹。土凍結(jié)時不僅原位置的水凍結(jié)成冰,而且在滲透力(抽吸力)作用下,水分將從未凍區(qū)向凍結(jié)鋒面轉(zhuǎn)移并在那里凍結(jié)成冰,使土的凍脹更加強烈。

  土在凍結(jié)過程中由于水變冰體積增大,并引起水分遷移、析冰、凍脹、土骨架位移,因而改變土的結(jié)構(gòu)。在融化過程則必然伴隨著土顆粒的位移,充填冰融化排出的空間,產(chǎn)生融化固結(jié),從而引起局部地面的向下運動,即熱融沉陷(熱融下沉)。

  為避免隧道施工中熱融沉陷,凍土隧道施工的關(guān)鍵工藝是作好保溫措施。 

  隧道保溫施工工藝主要包括:優(yōu)選寒季施工明洞及洞口工程,開挖施工時增設(shè)遮陽保溫棚,阻隔太陽輻射能量對凍土的影響。正洞采用弱爆破及光面爆破技術(shù)減少對凍土的擾動和超欠挖,開挖后清除拱(墻)夾層散碎冰塊,迅速噴混凝土封閉巖面;采用有軌運輸減少洞內(nèi)廢氣污染,減少通風(fēng)次數(shù)和風(fēng)量;暖季采用夜間放炮通風(fēng)和冷風(fēng)機通風(fēng)等措施將洞內(nèi)掌子面溫度控制在5℃以下,盡量縮小洞室開挖斷面外的凍土融化圈。隧道全長全斷面鋪設(shè)“防水層+保溫板+防水層”,阻隔隧道竣工后洞內(nèi)溫度變化對凍土的擾動,確保運營安全。

  影響土體凍脹的主要因素是土體類型、含水狀況和凍結(jié)條件。凍土學(xué)家經(jīng)過長期的試驗證明:粗顆粒土凍脹小甚至不凍脹,而細(xì)顆粒土一般凍脹較大。土體含水量大則凍脹嚴(yán)重,當(dāng)土體含水量小于某一值時,土的凍脹率為零。為防止凍脹對明洞及洞口工程結(jié)構(gòu)的影響,將明洞及洞口仰坡周邊凍脹影響范圍內(nèi)的富冰凍土、飽冰凍土和含土冰層挖除,用粗顆粒土換填,嚴(yán)格控制粗顆粒土的含水量,換填后作好防排水設(shè)施。

  工程實例:青藏鐵路風(fēng)火山多年凍土隧道全長1338m,是世界上海拔最高的凍土隧道,多年凍土上限1~1.8m,凍土層厚達(dá)100~150m。洞身全部位于凍土之中。在施工過程中充分把握凍土的工程性質(zhì),采用注漿管棚、注漿錨桿、洞內(nèi)光面爆破等開挖技術(shù)并綜合運用粗顆粒土換填明洞覆蓋層,全長、全斷面設(shè)置多重保溫層,以及保溫、控溫、供氧、噴射混凝土、信息監(jiān)控等多項技術(shù),盡量縮小凍土融化圈,使凍土隧道重建新的熱量平衡系統(tǒng),滿足了安全、優(yōu)質(zhì)、高效的建設(shè)要求。

  此外凍土區(qū)防溫措施還有傾填片石通風(fēng)路基施工工藝,高溫細(xì)粒土鋪設(shè)保溫板路基施工技術(shù),高溫細(xì)粒土熱棒路基施工技術(shù)等,這些措施都可以大大減少路基承載后對凍土的熱融影響。

  2 地鐵和過江隧道施工新工藝

  隨著我國城市化快速發(fā)展,大城市的交通壓力日益增大,大規(guī)模的城市地鐵建設(shè)勢成必然。對于沿江規(guī)劃的城市過江隧道的建設(shè)也越來越多。這類工程建設(shè)往往規(guī)模大,施工環(huán)境惡劣,施工技術(shù)復(fù)雜,下面簡單介紹幾種施工新工藝。

  2.1 地鐵施工中的樁基托換技術(shù)

  地鐵建設(shè)中不可避免遇到樁基托換工程。深圳地鐵百貨廣場大軸力樁基托換技術(shù)研究,解決了大軸力樁基托換的主要關(guān)鍵技術(shù)問題,豐富了樁基托換工程的施工工藝。

  樁基托換形式是我國托換技術(shù)應(yīng)用的常見形式。樁基托換的核心技術(shù)在于新樁和舊樁荷載的轉(zhuǎn)換,要求在轉(zhuǎn)換過程中托換結(jié)構(gòu)和新樁的變形限制在上部結(jié)構(gòu)允許范圍內(nèi)。針對上述變形的控制,托換的機制可分為主動和被動托換。主動托換主要是在舊樁截樁之前,對新樁和托換結(jié)構(gòu)加載,消除部分新樁和托換結(jié)構(gòu)的變形,使得托換后樁和結(jié)構(gòu)的變形限制在允許范圍內(nèi)。該技術(shù)應(yīng)用于大軸力、結(jié)構(gòu)物對變形要求嚴(yán)的情況。被動托換是在舊樁切除過程中,將荷載傳遞到新樁,托換后的樁和結(jié)構(gòu)變形難以控制,該技術(shù)適用于小噸位和對結(jié)構(gòu)變形控制不嚴(yán)的情況。深圳地鐵國貿(mào)老街區(qū)間百貨廣場大廈樁基托換工程具有托換樁多(6根)、軸力大 (18000kN)、樁徑大(2000mm)、地質(zhì)條件差、地下水頭高、托換位置深(地下2層)、使用環(huán)境復(fù)雜(中間穿越地鐵,振動影響)等特點,目前國內(nèi)外尚無類似大軸力托換施工經(jīng)驗(國外日本類似托換最大軸力8750kN,國內(nèi)5900kM)可借鑒。

  深圳地鐵一期工程線路由于受走向及最小半徑(Rmin=300m)等條件限制,必須從百貨廣場大廈裙樓下穿越。由此產(chǎn)生樁基礎(chǔ)托換問題。百貨廣場主樓22 層,裙樓9層,地下室3層,為框梁剪力墻結(jié)構(gòu),基礎(chǔ)為獨立樁基端承樁。樁端持力層(強風(fēng)化層)承載力標(biāo)準(zhǔn)值2700kPa,樁身直徑最大2000mm的人工挖孔樁(C25),根據(jù)樓層估算托換樁最大設(shè)計軸力約18900kN。

  區(qū)間隧道通過百貨廣場、深南東路、華中酒店,由于暗挖隧道位置及其上部建筑物的影響,部分樁在隧道內(nèi)或緊靠隧道,須托換百貨廣場9層裙樓樁6根(樁徑2000mm,樁基持力層均在隧道結(jié)構(gòu)面以下基巖),最大軸力18000kN。

  根據(jù)百貨廣場的結(jié)構(gòu)、基礎(chǔ)形式及操作空間,百貨廣場樁基托換采用梁式托換結(jié)構(gòu)柱的形式,托換新樁采用人工挖孔樁,整個托換工程在地下3層室內(nèi)進(jìn)行。

  根據(jù)高層結(jié)構(gòu)變形要求,裙樓樁基采用主動托換。托換時,在托換梁和新樁之間設(shè)置加載千斤頂,利用千斤頂加載,使上部結(jié)構(gòu)有微量頂升位移,同時使新樁的大部分沉降位移在頂升時預(yù)壓完成,從而通過主動加載實現(xiàn)作用在原結(jié)構(gòu)樁上的荷載經(jīng)托換大梁轉(zhuǎn)移至新樁上,且原樁(柱)頂升值和新樁沉降也得到有效控制。截樁在開鑿人工孔至托換梁底下后逐步進(jìn)行。截樁后隧道暗挖、襯砌變形穩(wěn)定后(期間千斤頂裝置及時調(diào)整),托換梁與新樁連接形成永久結(jié)構(gòu),托換完成。樁基托換及隧道施工全過程都實行嚴(yán)格的全過程監(jiān)控、量測,確保了結(jié)構(gòu)安全。

  通過嚴(yán)格的計算和施工操作,通過技術(shù)攻關(guān),解決了軟弱地層樁基開挖支護、托換梁以及截樁、力的轉(zhuǎn)換等技術(shù)難題,保證了百貨廣場等高層建筑物、地下管線的安全和正常使用。

  該工程樁基托換原理如圖3所示。

  2.2 過江隧道施工中的水平凍結(jié)法

  地下隧道之間的連接通道凍結(jié)法施工是利用人工制冷技術(shù),使地層中的水變冰,把天然土變成凍土,增加其強度和穩(wěn)定性,隔絕地下水與地下結(jié)構(gòu)的聯(lián)系,以便在凍結(jié)壁的保護下進(jìn)行聯(lián)絡(luò)通道施工的一種特殊施工方法。

  制冷技術(shù)是用氟里昂作制冷劑的三大循環(huán)系統(tǒng)完成的。三大循環(huán)系統(tǒng)分別為氟里昂循環(huán)系統(tǒng)、鹽水循環(huán)系統(tǒng)和冷卻水循環(huán)系統(tǒng)。制冷三大循環(huán)系統(tǒng)構(gòu)成熱泵,將地?zé)嵬ㄟ^凍結(jié)孔由低溫鹽水傳給氟里昂循環(huán)系統(tǒng),再由氟里昂循環(huán)系統(tǒng)傳給冷卻水循環(huán)系統(tǒng),最后由冷卻水循環(huán)系統(tǒng)排入大氣。隨著低溫鹽水在地層中的不斷流動,地層中的水逐漸結(jié)冰,形成以凍結(jié)管為中心的凍土圓柱,凍土圓柱不斷擴展,最后相鄰的凍結(jié)圓柱連為一體并形成具有一定厚度和強度的凍土墻或凍土帷幕。水平凍結(jié)加固原理如圖4所示。

  在實際施工中,通過水平鉆進(jìn)凍結(jié)孔,設(shè)置冷凍管,并利用鹽水為熱傳導(dǎo)媒介進(jìn)行凍結(jié)。一般是在工地現(xiàn)場內(nèi)設(shè)置凍結(jié)設(shè)備,冷卻不凍液(一般為鹽水)至-22~-32℃。其主要特點有:

  (1)可有效隔絕地下水,對于含水量>10%的含水、松散、不穩(wěn)定地層均可采用凍結(jié)法施工。 

  (2)凍土帷幕的形狀和強度可視施工現(xiàn)場條件、地質(zhì)條件靈活布置和調(diào)整,凍土強度可達(dá)4~10MPa,能有效提高工效。

  (3)凍結(jié)法施工對周圍環(huán)境無污染,無異物進(jìn)入土壤,噪聲小。

  (4)影響凍土強度的因素多,凍土屬于流變體,其強度既與凍土的成因有關(guān),也與受力的特征有關(guān),影響凍土的主要因素有凍結(jié)溫度、土體含水率、土的顆粒組成、荷載作用時間和凍結(jié)速度等。

  凍結(jié)法的關(guān)鍵施工技術(shù)包括:

  (1)確定凍結(jié)主要技術(shù)指標(biāo),即根據(jù)實際工況,確定積極凍結(jié)期和維護凍結(jié)期的鹽水溫度、凍土墻平均溫度和凍土強度。

  (2)凍結(jié)孔布置和施工,即根據(jù)連接通道平面尺寸和結(jié)構(gòu)受力特征,設(shè)計布置凍結(jié)孔,同時凍結(jié)孔布置應(yīng)根據(jù)管片配筋圖微調(diào)凍結(jié)孔偏斜,控制孔徑向外的偏角在0.5°~1 0°范圍。

  (3)凍結(jié)站設(shè)計、積極凍結(jié)和維護凍結(jié)施工,計算凍結(jié)冷量,根據(jù)冷量需要選擇冷凍機組。

  (4)連接通道開挖與構(gòu)筑施工方法及其順序。 

  (5)施工監(jiān)測監(jiān)控。

  上海市大連路越江隧道工程由東、西2條隧道組成,2條隧道之間設(shè)有連接通道,均位于黃浦江底下,相距約400m。位于浦西岸邊的連接通道(一),東西線隧道中心間距35.705m,隧道間高差3.565m,連接通道凈距約25.665m;位于浦東岸邊的連接通道(二),東西線隧道中心間距27.575m,隧道間高差0.345m,連接通道凈距為17.175m。2條連接通道所處地層為砂質(zhì)粉土和粘質(zhì)粉土,滲透系數(shù)大、承壓水頭高,為滿足通道的施工安全采用凍結(jié)法施工。工程實踐表明,連接通道凍結(jié)施工技術(shù)具有凍結(jié)速度快、凍土強度高、帷幕均勻性好、抗?jié)B漏性能高、與隧道管片結(jié)合嚴(yán)密、施工安全可靠的優(yōu)點。對于長距離、大深度、高承壓水條件下的江底連接通道的施工,其安全可靠性較能保證。融沉作為凍結(jié)法施工中不可避免的情況,可通過隧道及連接通道預(yù)留的注漿孔,及時地對地層進(jìn)行補償注漿,減小融沉量。在數(shù)條連接通道的施工中,已經(jīng)充分顯示出其優(yōu)越性和社會經(jīng)濟價值。

  2.3 地鐵車站三拱兩柱結(jié)構(gòu)暗挖中洞施工工藝

  隨著我國城市地鐵和交通快速軌道的發(fā)展,修建地鐵的大城市也越來越多。由于地鐵所經(jīng)過的地段大部分為繁華的商業(yè)區(qū),有些地段受拆改費用、交通占道、地下管線保護、古文物保護、環(huán)境保護等方面的影響,明挖(蓋挖)地鐵車站受到限制,只能采用暗挖法施工,從而出現(xiàn)了暗挖地鐵車站。

  北京地鐵5號線磁器口車站、天壇東門站、崇文門站工程,采用三拱兩柱暗挖車站中洞法綜合配套施工技術(shù),保證了工程質(zhì)量和安全,按期完成了施工任務(wù),取得了良好的社會效益。該技術(shù)適用于圍巖自穩(wěn)能力較差的地鐵大跨雙層暗挖車站及多連拱等地下停車場、地下商場、大跨公路、鐵路隧道的施工。

  暗挖車站中洞法施工的技術(shù)特點:

  (1)采用CRD(CrossDiaphragm)施工方法完成中洞開挖,形成安全中洞初期支護體系。

  (2)在中洞內(nèi)完成底板、底梁、鋼管柱、中板、頂梁和中拱,形成穩(wěn)定中洞支撐體系,承受圍巖主要荷載,為邊洞開挖提供安全條件。

  (3)采用CRD法對稱完成邊洞開挖。

  (4)拆除臨時初期支護體系,完成邊洞二襯施工。 

  (5)體系轉(zhuǎn)換過程中,合理確定分段長度,同時加設(shè)鋼支撐。

  (6)充分發(fā)揮監(jiān)控量測作用,信息化指導(dǎo)施工。

  暗挖車站中洞法施工的工藝原理:把大跨地質(zhì)較差的隧道分成三部分,各部分條塊分割,保證開挖期間安全,先形成中洞初期臨時結(jié)構(gòu),在臨時結(jié)構(gòu)內(nèi)施做永久襯砌結(jié)構(gòu),形成中部穩(wěn)定支撐,承受圍巖主要荷載,然后對稱開挖邊洞部分的各分塊,最后形成整體結(jié)構(gòu)。體系轉(zhuǎn)換過程中,結(jié)合監(jiān)測情況加設(shè)鋼支撐。其工藝流程為:施工準(zhǔn)備→超前管棚→注漿加固→中洞各部開挖→防水層鋪設(shè)→中洞底板、底梁→立柱→中洞中板→頂梁、中拱→超前管棚→注漿加固→邊洞各部開挖→臨時隔壁拆除→防水層鋪設(shè)→邊洞底板→邊墻、中板→邊拱→二次襯砌背后注漿。地鐵車站三拱兩柱結(jié)構(gòu)暗挖中洞法施工如圖5所示。

  磁器口車站是北京地鐵5號線與規(guī)劃北京地鐵7號線的換乘站,車站全長180m,寬21.87m,高14.933m。車站建筑面積為12244.2m2,車站主體覆土深度為9.8~10.3m。車站為雙層島式三拱兩柱結(jié)構(gòu),車站地下1層為站廳層,預(yù)留通道實現(xiàn)與七號線換乘,地下2層為站臺層。車站施工采用本法,保證了工程施工安全和質(zhì)量,獲得了成功。

  3 水下基礎(chǔ)施工工藝

  3.1 海上基礎(chǔ)工程施工

  隨著基礎(chǔ)設(shè)施的建設(shè),跨海大橋等海上工程逐漸增多,一批規(guī)劃和在建的大橋,如渤海灣跨海工程、長江口跨江工程、杭州灣跨海工程(在建)、珠江口伶仃洋跨海工程以及瓊州海峽工程等對海上基礎(chǔ)施工帶來了新的挑戰(zhàn)。大型跨海、跨江工程基礎(chǔ)采用大直徑、長基樁是必然的趨勢,結(jié)構(gòu)鋼管樁、臨時鋼護筒及海上平臺臨時鋼管樁將大量采用。這些都對打樁船提出了新的要求。而配有高樁架,強大吊樁動力系統(tǒng),大能量打樁錘及先進(jìn)的海上沉樁GPS測量定位系統(tǒng)的打樁船能出色的完成海上錘擊沉樁的任務(wù)。 

  從大的方面來看,海上沉樁系統(tǒng)包括打樁船、運樁船、拋錨艇、拖輪及交通船等船舶組合。單從鋼管樁的沉入工序來看,打樁船為鋼管樁沉入的主體,其主要由以下幾個部分組成:船體系統(tǒng)(包括船體、錨位系統(tǒng)、動力系統(tǒng))、樁架及其吊樁系統(tǒng)、錘擊沉樁系統(tǒng)(包括打樁錘、替打)、海上沉樁GPS測量定位系統(tǒng)等。尤其是 GPS能實現(xiàn)遠(yuǎn)離岸邊施工船的定位和定位過程中數(shù)據(jù)的自動采集與處理,并以圖形和數(shù)字的形式反映施打樁的當(dāng)前和設(shè)計位置,便于操作人員調(diào)整船位進(jìn)行施工打樁,同時還能自動生成打樁報表以及進(jìn)行數(shù)據(jù)的回放,從而給海上沉樁帶來便利。 

  海上沉樁定位采用“海上沉樁GPS RTK測量定位系統(tǒng)”來實現(xiàn),如圖6所示。

  安裝在打樁船上的3個GPS接收機接收建立在陸地的基準(zhǔn)站及海中參考站發(fā)射的固定頻率數(shù)據(jù)鏈,以此作為定位的基準(zhǔn)數(shù)據(jù)。其工作原理:定位時,由固定在打樁船上的GPS流動站以RTK方式控制船體的位置、方向和姿態(tài),同時配合2臺固定在船上的免棱鏡測距儀測定樁身在一定標(biāo)高上的相對于船體樁架的位置,由此可推算出樁身在設(shè)計標(biāo)高上的實際位置,并顯示在系統(tǒng)計算機屏幕上。通過與設(shè)計坐標(biāo)比較,進(jìn)行移船糾位,直至偏位滿足要求。樁身的傾斜坡度由樁架控制。樁頂標(biāo)高根據(jù)由免棱鏡測距儀發(fā)出的紅色水平光束所指涂畫在樁身上的刻度,通過系統(tǒng)計算得出。具體定位前,將所要定位樁的設(shè)計中心坐標(biāo)、高程、平面扭角等參數(shù)輸入計算機內(nèi),定位時,可在顯示屏上顯示實時樁位數(shù)據(jù)與圖形,同時也顯示設(shè)計沉樁位置和偏差,打樁船指揮人員根據(jù)顯示的有關(guān)信息指揮打樁船正確就位。

  本工藝適用于海洋、大江中的橋梁、碼頭的結(jié)構(gòu)鋼管樁、臨時鋼護筒及水中平臺臨時鋼管樁的沉入施工,有以下明顯的優(yōu)點:①能在海況惡劣的海域中進(jìn)行作業(yè);② 能夠適應(yīng)超長、大直徑鋼管樁的沉樁施工;③能滿足不同傾斜度和平面偏角斜樁的沉樁施工;④能使鋼管樁穿過不同的土層;⑤測量定位簡單快捷,精度滿足要求;⑥施工周期短(單根直徑1.6m,長80m左右的鋼管樁沉樁施工全過程僅為2.5h)。這在在建的杭州灣大橋工程中得到了實踐。

  3.2 無導(dǎo)向船雙壁鋼圍堰下沉施工技術(shù)

  基礎(chǔ)施工中,傳統(tǒng)采用的鋼板樁圍堰鉆孔樁基礎(chǔ)和沉井沉至基層的基礎(chǔ),存在著影響工程進(jìn)度的2個薄弱環(huán)節(jié):①鋼板樁圍堰鉆孔樁基礎(chǔ)采用單層鋼板樁,沉井沉至基層的基礎(chǔ)在沉井頂上安設(shè)的防水圍堰,一般強度較小,圍堰內(nèi)抽水工序的安排受到施工水位的限制;②沉井基礎(chǔ)嵌入巖層清除風(fēng)化巖的消基工作非常費工費時,特別是在深水急流中工程進(jìn)度直接制約著整個基礎(chǔ)的安全渡洪。相比而言,雙壁鋼圍堰鉆孔樁基礎(chǔ)采用雙壁鋼圍堰防水結(jié)構(gòu),該結(jié)構(gòu)吸收了上述2種施工結(jié)構(gòu)的優(yōu)點,實質(zhì)上就是一個圓形浮式井筒和防水圍堰結(jié)合起來的施工結(jié)構(gòu),能夠承受較大的向內(nèi)或向外的水壓力,一般情況下,基礎(chǔ)施工工序的安排不受外界季節(jié)性水位變化的影響。 

  雙壁鋼圍堰由內(nèi)外兩板壁組成,板壁間以剛性支撐予以連接,由于兩板壁之間為空腔,底部以環(huán)形刃腳封閉,使其具有自浮能力,在底節(jié)處于浮起的情況下可以根據(jù)設(shè)備起重能力逐節(jié)加高板壁,在空腔內(nèi)注水配重并通過吸泥機吸泥促使其下沉,直至將鋼圍堰下沉至設(shè)計指定位置,并通過灌注水下封底混凝土使其保持穩(wěn)定,而后根據(jù)設(shè)計要求進(jìn)行鉆孔樁施工,鉆孔平臺可直接搭設(shè)在鋼圍堰頂面。
  采用無導(dǎo)向船雙壁鋼圍堰下沉施工,由于取消了龐大的導(dǎo)向船、聯(lián)結(jié)梁體系等,錨碇系統(tǒng)所承受的風(fēng)力和水流作用力大大減少,從而簡化了錨碇設(shè)備的配置與施工,加快了施工進(jìn)度,節(jié)省了鋼料和水上設(shè)備。同時雙壁鋼圍堰結(jié)構(gòu)為浮式沉井,既便于浮運就位又能夠承受較大的水壓力,還可以克服下沉?xí)r底部翻砂的弊病,而且圍堰吸泥下沉就位時間短,施工安全。特別適用于通航條件要求高,施工區(qū)域狹窄,砂粘土及卵石土地層,無法設(shè)置導(dǎo)向船的水上施工項目。

  該工藝應(yīng)用于四川隆納鐵路瀘州長江大橋水中基礎(chǔ)施工,順利完成了深水基礎(chǔ)施工任務(wù),確保大橋按期完工。對于類似的深水基礎(chǔ)施工,有廣泛的推廣應(yīng)用價值。

  4 結(jié)語 

  我國土地遼闊、幅員廣大,自然地理環(huán)境不同,土質(zhì)各異,地下工程的區(qū)域性強,這使得地下工程施工具有較大的差異性和復(fù)雜性。結(jié)合不同的工程特點不斷進(jìn)行創(chuàng)新是地下工程施工技術(shù)得以提高的根本。本文通過介紹近年來我國完成的幾種新型地下工程施工工藝,期望能給予地下工程施工一些啟發(fā),在此基礎(chǔ)上一方面積極推廣應(yīng)用這些新工藝,更重要的是在應(yīng)用的基礎(chǔ)上不斷創(chuàng)新,使我國的地下工程施工不斷邁上新臺階。

 
 
[ 技術(shù)搜索 ]  [ 加入收藏 ]  [ 告訴好友 ]  [ 打印本文 ]  [ 違規(guī)舉報 ]  [ 關(guān)閉窗口 ]

 

 
推薦企業(yè)

?2006-2016 混凝土網(wǎng)版權(quán)所有

地址:上海市楊浦區(qū)國康路100號國際設(shè)計中心12樓 服務(wù)熱線:021-65983162

備案號: 滬ICP備09002744號-2 技術(shù)支持:上海砼網(wǎng)信息科技有限公司

滬公網(wǎng)安備 31011002000482號